

ANNUAL WATER QUALITY REPORT

REPORTING YEAR 2020

Presented By
City of Kaufman

Quality First

Once again, we are pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2020. As in years past, we are committed to delivering the best-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education while continuing to serve the needs of all our water users. Thank you for allowing us the opportunity to serve you and your family.

We encourage you to share your thoughts with us on the information contained in this report. After all, well-informed customers are our best allies.

About Your Source Water

The City of Kaufman purchases water from the North Texas Metropolitan Water District (NTMWD) Wylie Water Treatment Plant (WTP). This water treatment plant provides purchased surface water from the reservoir Lavon Lake, located in Collin County. The water is delivered to our ground storage tanks. From there, the water is delivered to customers through the city's distribution system. The NTMWD receives raw water from Lavon Lake for treatment at the Wylie WTP.

In addition to Lavon Lake, NTMWD holds water rights in Lake Texoma; Jim Chapman Lake (Cooper Lake); Lake Tawakoni; and the East Fork Raw Water Supply Project (Wetland), which augment supplies. For detailed information on our water sources, treatment processes, and more, please visit NTMWD's Web site at: www.ntmwd.com.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Public Participation Opportunities

The City of Kaufman City Council meets the 4th Monday of every month at Kaufman City Hall in the Council Chamber at 6:00 p.m. City Hall is located at 209 S Washington St., Kaufman, TX 75142. A public meeting will be held on Wednesday, July 7th, 2021, @ 10:00 a.m. at the Kaufman City Hall Council Chambers, located at 209 S. Washington St., Kaufman, to address questions pertaining to the 2020 Annual Water Quality Report. For questions or concerns regarding this report or water quality, please call (972)-932-2216.

Water Usage

The average home with four people uses approximately 200 gallons of water per day and 6,000 gallons per month. If you have any questions about the water loss audit, please call (972) 932-2216.

Source Water Assessment

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. Their report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. The information contained in the assessment allows us to focus on our source water protection strategies. For more information on source water assessments and protection efforts at our system, please contact us, NTMWD, at (972) 442-5405 or send a message to environmental.info@ntmwd.com.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

QUESTIONS?

For more information regarding this report, or for any questions relating to your drinking water, please contact Assistant City Manager Mike Holder at (972) 932-2216.

About Your Drinking Water

In order to ensure that tap water is safe to drink, the EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on the taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Water Conservation Tips

You can play a role in conserving water and saving yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

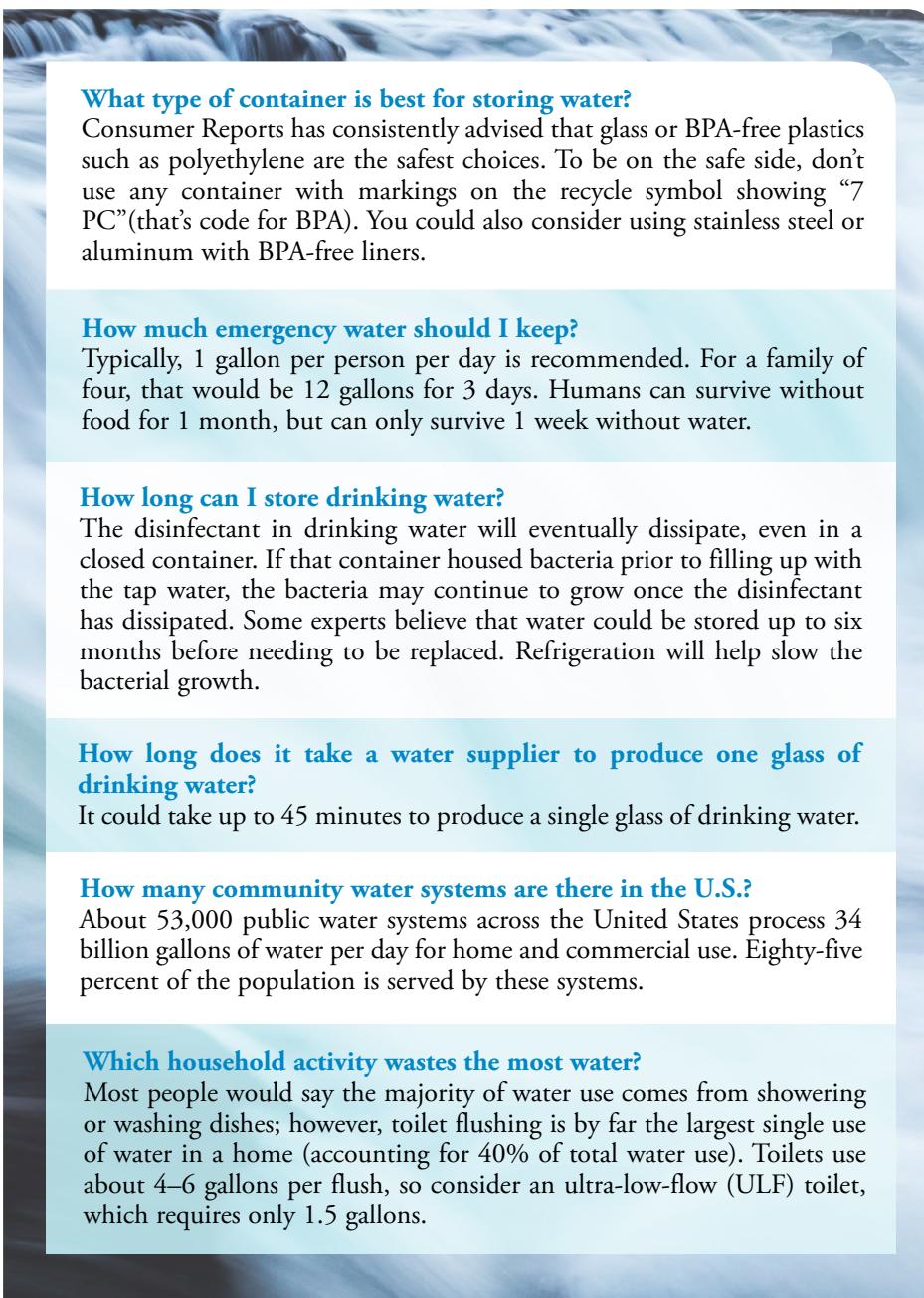
- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Secondary Substances

Many substances (such as calcium, sodium, or iron) that are often found in drinking water can cause taste, color, and odor problems. The taste, color, and odor constituents, called secondary contaminants or secondary substances, are regulated by the State of Texas, not by the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may greatly affect the appearance and taste of your water. For more information on the taste, odor, or color of drinking water, please call (972) 932-2216.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.


The State recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The percentage of Total Organic Carbon (TOC) removal was measured each month, and the system met all TOC removal requirements.

REGULATED SUBSTANCES							
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Bromate (ppb)	2020	10	0	8.91	8.91–8.91	No	By-product of drinking water disinfection
Chloramines (ppm)	2020	[4]	[4]	2.31	1.4–3.3	No	Disinfectant used to control microbes
Haloacetic Acids [HAAs] ¹ (ppb)	2020	60	NA	20	1.1–17	No	By-product of drinking water disinfection
Nitrate (ppm)	2020	10	10	0.453	0.453–0.453	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Simazine (ppb)	2020	4	4	0.08	0.07–0.08	No	Herbicide runoff
TTHMs [Total Trihalomethanes] (ppb)	2020	80	NA	45	21.1–29.7	No	By-product of drinking water disinfection
Total Coliform Bacteria (Positive samples)	2020	TT	NA	0	NA	No	Naturally present in the environment
Tap water samples were collected for lead and copper analyses from sample sites throughout the community.							
Substance (Unit of Measure)	Year Sampled	AL	MCLG	Amount Detected (90th %ile)	Sites Above AL	Violation	Typical Source
Copper (ppm)	2019	1.3	1.3	0.3079	0	No	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead (ppb)	2019	15	0	1.52	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
SECONDARY SUBSTANCES							
Substance (Unit of Measure)	Year Sampled	SCL	MCLG	Highest Level Detected	Range Low-High	Violation	Typical Source
pH (Units)	2020	>7.0	NA	8.60	8.04–8.60	No	Measure of corrosivity of water
UNREGULATED SUBSTANCES ²							
Substance (Unit of Measure)	Year Sampled	Highest Level Detected		Range Low-High	Typical Source		
Bromodichloromethane (ppb)	2020	8.31		6.30–8.31	By-product of drinking water disinfection		
Bromoform (ppb)	2020	<1.00		<1.00–<1.00	By-product of drinking water disinfection		
Chloroform (ppb)	2020	18.3		10.3–18.3	By-product of drinking water disinfection		
Dibromochloromethane (ppb)	2020	4.95		3.76–4.95	By-product of drinking water disinfection		

¹The value in the Highest Level or Average Detected column is the highest average of all HAAS sample results collected at a location over a year.

²Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of monitoring unregulated contaminants is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

What type of container is best for storing water?

Consumer Reports has consistently advised that glass or BPA-free plastics such as polyethylene are the safest choices. To be on the safe side, don't use any container with markings on the recycle symbol showing "7 PC"(that's code for BPA). You could also consider using stainless steel or aluminum with BPA-free liners.

How much emergency water should I keep?

Typically, 1 gallon per person per day is recommended. For a family of four, that would be 12 gallons for 3 days. Humans can survive without food for 1 month, but can only survive 1 week without water.

How long can I store drinking water?

The disinfectant in drinking water will eventually dissipate, even in a closed container. If that container housed bacteria prior to filling up with the tap water, the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water could be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth.

How long does it take a water supplier to produce one glass of drinking water?

It could take up to 45 minutes to produce a single glass of drinking water.

How many community water systems are there in the U.S.?

About 53,000 public water systems across the United States process 34 billion gallons of water per day for home and commercial use. Eighty-five percent of the population is served by these systems.

Which household activity wastes the most water?

Most people would say the majority of water use comes from showering or washing dishes; however, toilet flushing is by far the largest single use of water in a home (accounting for 40% of total water use). Toilets use about 4–6 gallons per flush, so consider an ultra-low-flow (ULF) toilet, which requires only 1.5 gallons.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SCL (Secondary Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.