

ANNUAL WATER QUALITY REPORT

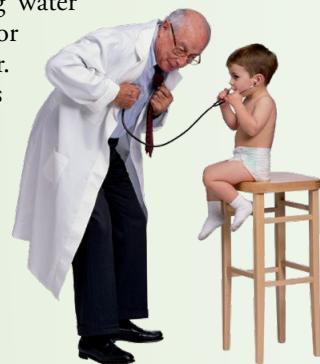
REPORTING YEAR 2019

Presented By
City of Kaufman

Purpose of Report

The purpose of the water quality report, also known as a consumer confidence report, is to provide consumers with information on what is in their drinking water and where that water comes from. The report helps consumers to make informed choices that may affect the health of themselves and their families.

We are always available for questions or concerns about your water.



Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer, those who have undergone organ transplants, those who are undergoing treatment with steroids, and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Information About Source Water

TCEQ completed a Source Water Susceptibility Assessment for all drinking water systems that own their sources. The assessment report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The system from which we purchase our water received the assessment report. For more information on the source water assessments and protection efforts at our system, contact NTMWD at (972) 442-5405 or send a message to environmental.info@ntmwd.com. Further details about sources and source-water assessments are available available on the Texas Drinking Water Watch Website: <https://www.tceq.texas.gov/goto/dww>.

City of Kaufman receives water from the North Texas Municipal Water District's Wylie Water Treatment Plants and the Tawakoni Water Treatment Plant. The TCEQ completed an assessment of both the NTMWD Wylie and Tawakoni Water Treatment Plants' source water, and results indicated that some of the sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Richard Underwood at 972-962-8007.

Where Do We Get Our Drinking Water?

City of Kaufman purchases water from North Texas Municipal Water District's Wylie Water Treatment Plant. The Wylie WTP provides purchased surface water from the reservoir at Lake Lavon, located in Collin County. The NTMWD conducts daily tests on both the raw water in Lake Lavon and the treated water delivered to the City of Kaufman.

Water Loss Audit

If you have any questions about the water loss audit, please call (972)-962-8007.

QUESTIONS?

For more information regarding this report, or for any questions relating to your drinking water, please call Richard Underwood, Director of Public Works, at (972) 962-8007.

Public Participation Opportunities

The City of Kaufman City Council meets the 4th Monday of every month at Kaufman City Hall in the Council Chamber at 6:00 p.m. City Hall is located at 209 S Washington St., Kaufman, TX 75142.

A public meeting will be held on Wednesday, July 8th, 2020, at 10:00 a.m. at the Public Works Office, located at 1003 W Grove St., Kaufman, to address questions pertaining to the 2019 Annual Water Quality Report.

For questions or concerns regarding this report or water quality, please call (972) 962-8007.

Information About Your Drinking Water

In order to ensure that tap water is safe to drink, the U.S. EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally- occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on the taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

BY THE NUMBERS

34 BILLION

The number of gallons of water produced daily by public water systems in the U.S.

1 MILLION

The number of miles of drinking water distribution mains in the U.S.

135 BILLION

The amount of money spent annually on maintaining the public water infrastructure in the U.S.

300 MILLION

The number of Americans who receive water from a public water system.

2 BILLION

The age in years of the world's oldest water found in a mine at a depth of nearly two miles.

151 THOUSAND

The number of active public water systems in the U.S.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The percentage of Total Organic Carbon (TOC) removal was measured each month, and the system met all TOC removal requirements set.

REGULATED SUBSTANCES							
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Atrazine (ppb)	2019	3	3	0.2	0.1–0.2	No	Runoff from herbicide used on row crops
Bromate (ppb)	2019	10	0	6.3	5.2–6.3	No	By-product of drinking water ozonation
Chromium (ppb)	2019	100	100	0	0–0	No	Discharge from steel and pulp mills; Erosion of natural deposits
Disinfectant Residual (ppm)	2019	[4]	[4]	2.30	1.40–3.00	No	Water additive used to control microbes
Fluoride (ppm)	2019	4	4	0.215	0.215–0.230	No	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids (HAA5) ¹ (ppb)	2019	60	No goal for the total	24	10–27.1	No	By-product of drinking water disinfection
Nitrate (ppm)	2019	10	10	0.394	0.394–0.394	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Simazine (ppb)	2019	4	4	0.33	0.32–0.33	No	Herbicide runoff
Total Coliform Bacteria ²	2019	TT	NA	0	0	No	Naturally present in the environment
Total Trihalomethanes (TTHM) ³ (ppb)	2019	80	No goal for the total	44	27.3–67.3	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

Substance (Unit of Measure)	Year Sampled	AL	MCLG	Amount Detected (90th %ile)	Sites Above AL	Violation	Typical Source
Copper (ppm)	2019	1.3	1.3	0.3079	0	No	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead (ppb)	2019	15	0	1.52	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

SECONDARY SUBSTANCES

Substance (Unit of Measure)	Year Sampled	SCL	MCLG	Amount Detected	Range Low-High	Violation	Typical Source
pH (Units)	2019	>7.0	NA	7.94	7.94–8.65	No	Measure of corrosivity of water

UNREGULATED SUBSTANCES⁴

Substance (Unit of Measure)	Year Sampled	Amount Detected	Range Low-High	Typical Source
Bromodichloromethane ⁵ (ppb)	2019	12.2	7.92–17.6	By-product of drinking water disinfection
Bromoform ⁵ (ppb)	2019	<1.00	<1.00–<1.00	By-product of drinking water disinfection.
Chloroform ⁵ (ppb)	2019	26.0	17.3–37.8	By-product of drinking water disinfection
Dibromochloromethane ⁵ (ppb)	2019	5.67	3.30–7.71	By -product of drinking water disinfection

¹The value in the Amount Detected column is the highest average of all HAA5 sample results collected at a location over a year.

²Reported monthly tests found no fecal coliform bacteria. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present.

³The value in the Amount Detected column is the highest average of all TTHM sample results collected at a location over a year.

⁴Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of monitoring unregulated contaminants is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

⁵Bromoform, chloroform, dichlorobromomethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals.

Definitions and Abbreviations

The tables in this report include scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: million fibers per liter (a measure of asbestos).

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU: nephelometric turbidity units (a measure of turbidity).

pCi/L: picocuries per liter (a measure of radioactivity).

ppb: micrograms per liter or parts per billion, or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million, or one ounce in 7,350 gallons of water.

ppq: parts per quadrillion, or picograms per liter (pg/l).

ppt: parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SCL (Secondary Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.